/* global Float32Array */ /*! Bezier curve function generator. Copyright Gaetan Renaudeau. MIT License: http://en.wikipedia.org/wiki/MIT_License */ function generateCubicBezier(mX1, mY1, mX2, mY2) { let NEWTON_ITERATIONS = 4, NEWTON_MIN_SLOPE = 0.001, SUBDIVISION_PRECISION = 0.0000001, SUBDIVISION_MAX_ITERATIONS = 10, kSplineTableSize = 11, kSampleStepSize = 1.0 / (kSplineTableSize - 1.0), float32ArraySupported = typeof Float32Array !== 'undefined'; /* Must contain four arguments. */ if (arguments.length !== 4) { return false; } /* Arguments must be numbers. */ for (let i = 0; i < 4; ++i) { if (typeof arguments[i] !== "number" || isNaN(arguments[i]) || !isFinite(arguments[i])) { return false; } } /* X values must be in the [0, 1] range. */ mX1 = Math.min(mX1, 1); mX2 = Math.min(mX2, 1); mX1 = Math.max(mX1, 0); mX2 = Math.max(mX2, 0); let mSampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize); function A(aA1, aA2) { return 1.0 - 3.0 * aA2 + 3.0 * aA1; } function B(aA1, aA2) { return 3.0 * aA2 - 6.0 * aA1; } function C(aA1) { return 3.0 * aA1; } function calcBezier(aT, aA1, aA2) { return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT; } function getSlope(aT, aA1, aA2) { return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1); } function newtonRaphsonIterate(aX, aGuessT) { for (let i = 0; i < NEWTON_ITERATIONS; ++i) { let currentSlope = getSlope(aGuessT, mX1, mX2); if (currentSlope === 0.0) { return aGuessT; } let currentX = calcBezier(aGuessT, mX1, mX2) - aX; aGuessT -= currentX / currentSlope; } return aGuessT; } function calcSampleValues() { for (let i = 0; i < kSplineTableSize; ++i) { mSampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2); } } function binarySubdivide(aX, aA, aB) { let currentX, currentT, i = 0; do { currentT = aA + (aB - aA) / 2.0; currentX = calcBezier(currentT, mX1, mX2) - aX; if (currentX > 0.0) { aB = currentT; } else { aA = currentT; } } while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS); return currentT; } function getTForX(aX) { let intervalStart = 0.0, currentSample = 1, lastSample = kSplineTableSize - 1; for (; currentSample !== lastSample && mSampleValues[currentSample] <= aX; ++currentSample) { intervalStart += kSampleStepSize; } --currentSample; let dist = (aX - mSampleValues[currentSample]) / (mSampleValues[currentSample + 1] - mSampleValues[currentSample]), guessForT = intervalStart + dist * kSampleStepSize, initialSlope = getSlope(guessForT, mX1, mX2); if (initialSlope >= NEWTON_MIN_SLOPE) { return newtonRaphsonIterate(aX, guessForT); } else if (initialSlope === 0.0) { return guessForT; } else { return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize); } } let _precomputed = false; function precompute() { _precomputed = true; if (mX1 !== mY1 || mX2 !== mY2) { calcSampleValues(); } } let f = function(aX) { if (!_precomputed) { precompute(); } if (mX1 === mY1 && mX2 === mY2) { return aX; } if (aX === 0) { return 0; } if (aX === 1) { return 1; } return calcBezier(getTForX(aX), mY1, mY2); }; f.getControlPoints = function() { return [{ x: mX1, y: mY1 }, { x: mX2, y: mY2 }]; }; let str = "generateBezier(" + [mX1, mY1, mX2, mY2] + ")"; f.toString = function() { return str; }; return f; } export default generateCubicBezier;